

PM2.5 Annual Averages Above NAAQS

(Source: U.S. EPA, Review of the National Ambient Air Quality Standards for Particulate Matter)

California Accounts for Majority of National PM Exposures

24-Hour PM2.5 (3-year mean 98th percentile)

Population-weighted exposures above NAAQS, based on 2000-02 AIRS data (Source: California Air Resources Board, Planning and Technical Support Division)

California PM2.5 Mostly Nitrate and Carbon, Very Little Sulfate

(Source: Particulate Matter Science for Policy Makers: A NARSTO Assessment, February 2003)

Initial recommendations

- Toxicology database on nitrate salts is quite limited; generally not suggestive of significant toxicity from brief exposures
- Recommend more compromised animal research, joint exposures, examination of cardiopulmonary endpoints (e.g. heart rate variability)
- Should include as explanatory variable in epidemiological research as well (*cf. Fairley, Environ Health Perspect 1999;107:637-641*)

Strongest PM10-Mortality Associations in Northeast and Southern California

(Source: HEI Special Report *Revised Analyses of Time-Series Studies of Air Pollution and Health,* May 2003).

Average fine and coarse PM data for summer 1996-1999

(Source: Motallebi N, Taylor CA Jr., and Croes BE. J. Air Waste Manage. Assoc 2003; 53: 1517-1530)

Average PM fine and coarse PM data for winter 1996-1999

(Source: Motallebi N, Taylor Jr. CA, and Croes BE. J. Air Waste Manage. Assoc. 2003;53: 1517-1530)

Toxicological Studies of With Greater Effects of Coarse than Fine PM

- *In vitro* cell injury and cytokine production (*Pozzi* et al. *Toxicology 2003*)
- Oxidative DNA damage *in vitro* (*Greenwell et al.* 2002)
- Inflammatory cytokine production, phagocytosis and other functional changes in alveolar macrophages, related to endotoxin content (Becker et al. Exp Lung Res 2003)
- Reduced alveolar macrophage function, not related to endotoxin (*Kleinman et al. Toxicol Lett* 2003)

Epidemiological Studies of Daily Mortality

- PM2.5 more important than coarse
 - Santa Clara, CA (Fairley et al. 1999)
 - Harvard six cities (Schwartz et al. 1996)
- Coarse more important than fine
 - Mexico City (Castillejos et al. 2000)
 - Coachella Valley, CA (Ostro et al. 2000)
- Coarse ≈ fine
 - Santiago, Chile (Cifuentes et al. 2000)
 - 8 Canadian cities (Burnett et al. 2000)

Epidemiological Studies of Asthma

• PM2.5 more important than coarse

- Reanalysis of 6 cities, Uniontown and State
 College, PA (symptoms) (Schwartz J et al. 2000)
- Coarse more important than fine
 - Toronto (hospitalizations) (Lin M et al. 2002)
- Coarse ≈ fine
 - Seattle (hospitalizations) (Sheppard L et al. 1999)

Coarse Particles: Recommendations

- Coarse fraction
 predominates in much of
 the West, but research
 database is sparse
- Recommend:
 - Epidemiological studies involving direct measurement of coarse fraction, rather than PM10-PM2.5
 - More toxicological evaluations of the coarse fraction from multiple locations, including cardiovascular and respiratory endpoints

